Improving robustness and reliability of phase-sensitive fMRI analysis using temporal off-resonance alignment of single-echo timeseries (TOAST)
نویسندگان
چکیده
Echo Planar Imaging (EPI), often utilized in functional MRI (fMRI) experiments, is well known for its vulnerability to inconsistencies in the static magnetic field (B(0)). Correction for these field inhomogeneities usually involves measuring the magnetic field at a single time point, and using this static information to correct a series of images collected over the course of one or multiple experiments. However, common phenomena, such as respiration and motion, change the characteristics of the B(0) field homogeneity in a time-dependent and often unpredictable manner, rendering previous field measurements invalid. The effects of these changes are particularly large in the image phase, due to its direct and sensitive relationship to the magnetic field, and methods utilizing complex information can suffer enormously. This dependence can be exploited to estimate the temporal dynamics of the B(0) field. Use of this information to correct fMRI data can provide more effective motion correction, reduce temporal "noise," and can substantially restore statistically significant power to complex fMRI data analysis. All of the necessary information is embedded in complex EPI images, and results indicate this is a robust way to improve the quality of fMRI data, especially when used with complex analysis.
منابع مشابه
Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملEffect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI
Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...
متن کاملMethodology for Robust Motion Correction of Complex-valued MRI Time Series
Introduction: In functional MRI (fMRI), the presence of subject motion during the acquisition of an image series can confound results. In general practice, only the magnitude portion of the images is used in the functional analysis [1], and thus correction for subject motion is required in only the magnitude images. However, statistical models for performing complex-valued fMRI analysis are ava...
متن کاملUsing functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas
Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...
متن کاملFMRI using high flip-angle alternating steady state balanced SSFP supported by Monte Carlo studies
Introduction The need exists for a functional MRI (fMRI) technique capable of artifact-free whole brain coverage, with good blood oxygenation level dependent (BOLD) contrast to noise ratio (CNR), and high temporal resolution. Conventional gradient echo (GRE) BOLD fMRI suffers from signal dropout in regions of magnetic field inhomogeneity, limiting coverage, while spin echo fMRI has reduced BOLD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 44 3 شماره
صفحات -
تاریخ انتشار 2009